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Big Data and Learning Analytics:  

A New Frontier in Science and Engineering Education Research 

 

 

Abstract 

 

 One of the noticeable societal trends caused by the rapid rise of computing power is the 

availability of big data. From the perspectives of four research projects, this symposium 

addresses an overall question of what big data and associated learning analytics mean to science 

education research and science teaching and learning in the classroom. Despite differences in 

science teaching and learning contexts where these projects are situated, they all face similar 

challenges in (1) identifying constructs of student cognition to promote in technology-enhanced 

learning environments, (2) creating capacities to collect meaningful data that can be 

automatically collected in the environments, (3) analyzing a large amount of learning data 

produced by students as effectively and meaningfully as possible, and (4) visualizing and using 

results of analyzed data to inform decisions teachers, students, curriculum developers, and 

researchers make. Each presenter will address these aspects and discuss related findings and 

future directions. This array of projects will provide the breadth and depth necessary to introduce 

big data and learning analytics to the community of science education researchers who are 

interested in implementing them in their own research. 
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Big Data and Learning Analytics:  

A New Frontier in Science and Engineering Education Research 

 

 For the last decade, the availability, analysis, and use of big data has created fundamental 

shifts in the information we use to make decisions in our daily lives ranging from election 

campaigns to targeted marketing strategies employed in commerce. These shifts have been 

fueled by the rapid rise of computing power which allows instant, immense, and automatic 

collection, storage, and analysis of a large amount of data. Big data have forced researchers to 

reformulate ways in which scientific research is carried out. While these shifts are not yet 

pervasive in educational research, there is a sign that some researchers are taking notice (Martin 

& Sherin, 2013). In particular, the field of educational technology in science education is a 

natural fit to addressing this new opportunity because big data collection and analysis capacities 

can be easily added to many existing technology-enhanced learning environments. The most 

important advantage associated with big data is scalability as big data can be collected 

automatically in an computer-enabled learning environment and analyzed in mass without 

involving additional time and resources even though the sample size grows significantly. 

However, the analysis of big data is not straightforward and needs careful investigations before it 

can be useful to researchers, teachers and students, and curriculum and technology developers. 

 This symposium addresses how this new opportunity can be conceptualized, 

operationalized, and materialized in order to improve science education research and science 

teaching and learning. We address this topic from the perspectives of four research projects. 

Despite differences in science teaching and learning contexts where these projects are situated, 

they all face similar challenges in (1) identifying constructs of student cognition to promote in 

technology-enhanced learning environments, (2) creating capacities to collect meaningful data 

that can be automatically collected in the environments, (3) analyzing a large amount of learning 

data produced by students as effectively and meaningfully as possible, and (4) visualizing and 

using results of analyzed learning data to inform decisions teachers, students, curriculum 

developers, and researchers make. Each presenter will address these four aspects, present related 

findings, and discuss future directions. Following presentations, Dr. Janet Kolodner will lead a 

discussion focusing on the challenges and complexities involved in big data and learning 

analytics. Then, the audience will have opportunities to interact with presenters as well as the 

discussant in order to synthesize ideas and studies presented in the symposium. 

 The four projects are selected to represent a broad spectrum of possibilities with big data 

and learning anaytics in terms of: 

 target audience ranging from elementary to high school students 

 complex cognition covering inquiry skills, engineering design, mastery of concepts, and 

drawing 

 analytical approach such as Bayesian Knowledge Tracing, machine-learning, net-

working, and topological recognition 

 analysis purpose ranging from modeling of student learning over time, improving 

teaching practices, to visualization of processed information. 

This array of research projects will provide the breadth and depth necessary to introduce big data 

and learning analytics to the community of science education researchers who currently are 

interested in using them in their own research. The topic of this symposium is critical for shaping 

the next generation science education researchers who can take advantage of the availability of 

big data associated with learning processes and outcomes. 
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Figure 1. Manhattan plots of students’ 
action time series that represent the level of 
student activeness during a multi-day 
engineering design project using Energy3D. 

Uncovering Engineering Learning with Visual Analytics 

 

Charles Xie and Saeid Nourian at The Concord Consortium 

 

 Subject/Problem: The rise of engineering education in K-12 schools (NGSS Lead States, 

2013) calls for basic research that can advance our understanding about how students learn 

engineering. A major research focus is on the process of engineering design (National Research 

Council, 2012). Because of the open-ended, project-based nature of engineering, students can 

produce a large quantity of data and artifacts while solving a complex design challenge, making 

it difficult to discern their learning. Visual analytics is a technique of scientific reasoning that 

uses visual interactive interfaces to optimally combine the computational visualization power of 

the computer and the pattern recognition power of the brain. This paper will demonstrate how 

visual analytics can be used to study the learning dynamics of engineering design encoded in the 

fine-grained data logs of the supporting design software that record all of student actions, 

artifacts, and articulations. These raw process data are difficult to analyze because of their 

complex, irregular, and personalized forms. Visual learning analytics can provide powerful tools 

for researchers to see patterns and trends in these student data, from which cognitive and learning 

theories for engineering education can be tested or derived. 

 The purpose of this paper is to demonstrate the potential of visual analytics as a 

methodology for assessing learning in engineering design. Our research is focused on two 

questions: (1) What science and engineering performance indicators can be computed from the 

fine-grained data stream logged by the design software? and (2) In what visualization should 

these indicators be represented so that researchers can rapidly sift large datasets? For example, it 

is, in theory, through the iterative cycles of design that students learn and apply science and math 

to optimize their engineering solutions and products (National Research Council, 2012). But how 

do we measure the degree of iteration for each student? These information cannot be easily 

obtained from pre/post assessments and can only be reliably extracted from the actual process 

data. 

 Analytic Methods: Approximately 200 high school students participated in this research 

project. Each student was challenged to solve an engineering design problem related to energy 

efficiency of the built environment using our Energy3D software, a modern computer-aided 

design (CAD) tool that supports form and function 

design with accurate, real-time scientific simulations 

while logging all student actions behind the scenes. In 

total, the students generated more than 2 GB of 

structured process data, creating a gold mine of data for 

this research. The following subsections provide some 

examples that show how visual analytics can be used to 

construct cognitive or non-cognitive performance 

indicators. 

 Results: Action time series measuring student 

activeness. As practice is an indispensable part of 

engineering, student activeness is a critical variable in 

engineering assessment. The outcomes for students who 

are deeply engaged and the outcomes for those who are largely disengaged need to be evaluated 

in separate cohorts. Time series visualization of student action logs provide a simple but reliable 
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Figure 2. A visualization of a student’s 
response to an intervention (red bar) 
with a certain type of design action 
(other bars) during an Energy3D 
project. 

way to sort student activeness before carrying out in-depth 

analyses (Xie, Zhang, Nourian, Pallant, & Hazzard, 2014). 

For example, by plotting the actions as a function of time as 

shown in Figure 1, we can clearly see that the first student 

maintained strong interest throughout the entire project 

whereas the second student went idle for a long period in 

the middle of the project. 

 Response functions measuring intervention 

outcomes. Measuring the effect of an intervention 

quantitatively is a central task of educational research. This 

can be mathematically modeled by using the response 

function, which describes how a stimulus prompts a design 

action (Xie, Zhang, Nourian, Pallant, & Bailey, 2014). Our 

results show that the occurrence of the design actions 

unrelated to an intervention were, not surprisingly, unaffected by it, whereas the occurrence of 

the design actions that the intervention targeted revealed a continuum of reactions ranging from 

no response to strong response. From the temporal patterns of these student responses, persistent 

effect and temporary effect (with different decay rates) were identified (Figure 2). This result is 

significant because it demonstrates a technique for determining the effect of formative feedback 

based on data logs. 

 Polar plots measuring design space exploration. 

Engineering design is a creative process. The design space is 

high-dimensional: A design comprises a number of elements 

(building blocks) added and revised through a number of 

actions that set or change their properties. The dynamic 

change of the volume of the subspace in which a student 

explores from episode to episode may be characteristic of 

his/her iterative divergent-convergent design thinking (Dym, 

Agogino, Eris, Frey, & Leifer, 2005). To visualize the 

explored design space, we use a polar plot whose axes 

represent the design dimensions. Dimensional attributes can 

be drawn on each axis. For example, the number of actions in 

each dimension can be shown using dots (Figure 3). It 

becomes immediately clear from the plot how widely the 

student has explored the design options. As the plot is 

interactive, clicking each axis will bring up additional information. For instance, a time series 

graph of the selected actions will be opened to show when the actions occurred and how their 

occurrences are correlated. 

 Discussion: As in any other scientific discipline, visualizations are useful tools in 

educational research. As learner data explode in the era of digital learning (Bienkowski, Feng, & 

Means, 2012), visual analytics will be important to researchers who work at the intersection 

between learning analytics and learning sciences (Martin & Sherin, 2013). This methodology 

will allow researchers to analyze large quantities of data produced by interactive learning 

environments more efficiently to discover or refine effective methods that foster deep learning in 

science and engineering practices. 
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Using Learning Curves to Guide the Teaching of Inquiry Skills 

 

Kyle R. Cheney, Raha Moussavi, and Janice Gobert 

 

Subject/Problem: Science inquiry skills are increasingly emphasized as an important 

aspect of students’ scientific literacy (NGSS Lead States, 2013). However, it can be challenging 

for students to learn and hone these inquiry skills because of their underlying complexity (e.g. 

Gobert, Sao Pedro, Baker, Toto, & Montalvo, 2012). Research on the nature of science inquiry 

skills using learning analytic techniques can help to guide the teaching of these skills in such a 

way that fosters more effective skill acquisition by the students (Gobert et al, 2012; 2013).  

The goal of this paper was to use learning analytics to investigate the extent to which 

inquiry skills transfer across science domains to better understand the degree to which inquiry 

skills are domain-specific. Because learning analytic techniques offer a more powerful way of 

analyzing data at a much more fine-grained level that is not often possible in classroom studies, 

our findings have clear implications for science instruction. 

Thus, the transferability of inquiry skills was investigated by looking at learning curves 

of students’ performances on four virtual labs in an intelligent tutoring system designed to assess 

inquiry skills. Inq-ITS (Inquiry Intelligent Tutoring System; Gobert, et al, 2012, 2013) engages 

users in virtual labs, or microworlds, to form hypotheses, experiment by manipulating variables 

and collecting data, and interpret the results of those experiments within specific science 

domains (e.g. phase change, Newtonian physics, biology of a cell, or ecosystems). The system 

uses learning analytics to evaluate log files generated from student interactions within the 

microworlds as a measure of student performance on 15 different inquiry skills and sub-skills 

relating to hypothesis generation, experimentation, and data interpretation. Inq-ITS has been 

shown to be an effective method for assessing inquiry skills in authentic scenarios (Gobert et al, 

2012; 2013). For a complete review of the system see Gobert et al., 2013.  

Methods: The data used in this analysis were from 155 Central Massachusetts eighth 

grade students’ within Inq-ITS across three physical science topics (phase change, density, and 

free fall) and one in general inquiry during the 2013-2014 school year in conjunction with the 

regular classroom curriculum. Each student completed the microworlds in the same order and 

each session took one class period. The sessions were separated by an average of 56 days.  

In order to assess the extent to which inquiry skills transfer across the physical science 

topics, a learning curve of student performance on the measured inquiry skills was constructed 

with the PSLC’s DataShop (Koedinger et al., 2010). Using DataShop, models and corresponding 

learning curves of complete, partial, and zero transfer were also constructed. How well the 

learning curves of each of these simulated models of transfer matched the actual data was 

examined using Additive Factor Modeling within DataShop. 

Each of the three models of transfer was comprised of a different set of knowledge 

components consisting of a unique combination of the 15 inquiry skills/sub-skills and 4 

microworlds. In the complete transfer model, students’ performance was grouped only by the 15 

general inquiry skills (a 15 knowledge component model), which appear across all four 

microworlds. In the zero transfer model, all of the inquiry skills were tied to the microworlds in 

which they occurred, creating a 60 knowledge component model (15 inquiry skills x 4 

microworlds). For the partial transfer model, both the inquiry skill and the microworlds were 

used to create groups additively for a total of 19 knowledge components (15 inquiry skills + 4 

microworlds).  
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 Results: Results from the evaluation of the learning curves provides support for the 

theory that there is at least partial transfer of inquiry skills from one science topic to the other. 

Using BIC as a measure of model fit, the model of partial transfer outperformed the other two 

models (partial transfer > complete transfer > zero transfer). Furthermore, analyses of the 

learning curves of student performance revealed that although there is a slight increase in the 

error rate as students transition from one microworld (science topic) to another, there is an 

overall decrease in error across interactions, which is indicative of partial transfer. A learning 

curve demonstrating no transfer would show a jump back up to the initial error rate after each 

transition to a new microworld. If there were complete transfer, a relatively even, downward 

slope would appear across all the sessions.  

Discussion: These findings support past research (Chen & Klahr, 1999; Kuhn, Schauble, 

& Garcia-Mila, 1992) that inquiry skills can transfer from one science topic to another. The use 

of learning analytics provides an opportunity to look at transfer of inquiry skills at a more fine-

grained level than in previous research. These findings also have implications for the way we 

understand and teach inquiry skills. Since our data suggests that inquiry skills partially transfer 

across topics, teachers can leverage the benefits of teaching inquiry in one domain when teaching 

a new domain. This both facilitates teachers’ instructional practices and supports students’ 

learning of inquiry. These findings also have implications for Inq-ITS, since students can be 

reminded by the system about their performance on past inquiry tasks as possible hints.  

 Though these findings are in line with past research, future analyses will use learning 

analytics to disentangle the extent to which each of the individual inquiry skills interact with one 

another. These analyses will also examine if certain inquiry skills transfer across topics better 

than other inquiry skills (e.g. whether an inquiry skill regarding hypothesis formation is more apt 

to transfer than an inquiry skill for interpreting data). Furthermore, since students’ interactions 

with the microworlds were separated by an average of 56 days, this may have had an effect on 

student performance and should be further examined. 

 

Modeling Student Learning of a Mechanical System during Game-like Simulations 

 

Hee-Sun Lee, Gey-Hong Gweon, Dan Damelin, & William Finzer 

 

 Subject/Problem: In a technology-enhanced learning environment, students are expected 

to learn scientific knowledge through interactive tasks configured with games or simulations 

(National Research Council, 2011). Students' actions with the environment and resulting 

performances on the interactive tasks can be captured automatically in the background as text-

based logs with time stamps. This study addresses an analytic approach called Bayesian 

Knowledge Tracing (BKT) that can describe how students acquire knowledge over time about a 

simple mechanical system involving a car on a ramp. The interactive ramp task was developed in 

a game format where students progress through a number of levels with increased conceptual 

difficulties. Research questions are (1) How does the BKT quantitatively model student progress 

in understanding the knowledge about the car-on-ramp system? and (2) What do the BKT results 

tell about the usefulness of the graphing tool in supporting student learning during the task?  

 Learning Task: In the ramp task, students were asked to determine a height so that the 

car could land on a particular location. The ramp task consisted of four performance levels 

requiring students to apply more and more sophisticated knowledge  about the system as follows: 

 Level 1: relationship between height and a fixed landing location 
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 Level 2: relationship between height and moving landing locations 

 Level 3: relationship between height and slope of the ramp on a fixed landing location 

 Level 4: relationship between height, slope, and friction on a fixed landing location 

Each level was comprised of four steps. To help students, a graphing tool was available. The 

graphing tool did not initially appear to students and thus should be activated by the students. 

Once activated, the graph would be automatically drawn based on the x- and y-axes students 

chose. A graph related to height vs. distance would be necessary for Levels 1 and 2; slope vs. 

height for Level 3; friction vs. height for Level 4. Active manipulation of the graphing tool was 

necessary for students to succeed. Students' performances were scored automatically on a 0 to 

100 scale based on how close the car landed from the specified landing location. If students 

scored 90 points or higher, then they were allowed to move to the next step within the level. If 

students finished all four steps within the level, they moved to the first step of the next level.  

 Methods: The ramp task was implemented in eight classrooms taught by two teachers in 

two high schools located in the Northeastern part of the US. One teacher taught a 12th grade 

physics course in a suburban setting while the other teacher taught a 9th grade physics course in 

an urban setting. The logged data analyzed in this study were 29,110 lines long and belonged to 

42 registered student groups who carried out the ramp task in a single class period. The BKT 

analysis was then applied to each student group's data.  The BKT considers a knowledge variable 

as latent which affects student performance. The BKT estimates the knowledge variable drawn 

from observed student performances as a function of time. The BKT analysis estimates the 

knowledge growth using four parameters as follows (Corbett & Anderson, 1995):  

 p(L1): Initial knowledge parameter associated with the probability that the student already 

knows the target knowledge prior to the task 

 p(T): Transition parameter associated with the probability of becoming knowledgeable at 

a given level 

 p(G): Guessing parameter associated with the probability of guessing correctly without 

the target knowledge (false positive) 

 p(S): Slip parameter associated with the probability of making a mistake when in fact the 

student has the target knowledge (false negative) 

These four parameters determine a unique curve for students' knowledge growth within a 

specified time frame. The larger the guessing parameter, the higher the likelihood of guessing the 

result correctly without possessing the knowledge. The larger the slip parameter, the higher the 

likelihood of choosing wrong heights despite having the target knowledge. We segmented each 

student group's log data by level because each level presented a new piece of physics knowledge 

for students to learn. We then estimated four BKT parameters within each level of the ramp task. 

This progression of knowledge mastery across levels was fitted based on Bayesian statistics with 

the Monte Carlo sampling method. In order to compare the impact of the graphing tool on 

student learning within the level, we coded a log data segment as "0" if the graphing tool was not 

actively manipulated in the segment and "1" if the graphing tool was actively manipulated. We 

then compared each of the four BKT parameters by the graph manipulation variable using mixed 

effects ANOVA with student group as a random effect and graph manipulation as a fixed effect.   

 Results: On average, student groups spent an average of 1,663 seconds on the ramp task 

ranging from 197 seconds to 3,491 seconds (SD = 505 seconds). An average number of log lines 

analyzed per group was 462 lines with a standard deviation of 179 lines. Among the 42 groups, 

at the end of one class period, 10% successfully reached the highest level, 31% worked at the 

Level 4; 38% worked at the Level 3; 19% worked at the Level 2; and 2% worked at the Level 1. 
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There were 137 segments in this data set. When student groups just started a level and did not 

conduct an enough number of simulation trials, the BKT algorithms could not estimate L1, T, G, 

S parameters for that level because parameter fitting did not converge. There were 10 such 

segments. As a result, we had 127 segments to which BKT parameters were estimated. 

According to Table 1, mixed effects ANOVA results indicate that, after controlling for group 

effects, the probability of guessing, p(G), was significantly lower for groups who actively 

manipulated graphs during a level than those who did not. After controlling for group effects, the 

probability of slip, p(S), was significantly lower for groups who actively used the graphing tool 

than those who did not. There were no significant group effects in all four parameter estimate 

comparisons. No significant interaction effects between group and graph manipulation across 

four BKT parameter estimate comparisons, indicating that the graph effect did not depend on 

which group was using graph. 

 Discussion: Together, these preliminary findings indicate how the embedded graphing 

tool worked for students: by encouraging students to make informed choices during simulations, 

rather than relying on random guessing. We believe that the BKT modeling approach can be 

useful to track student progress in game-like simulations and can facilitate the design-based 

research by allowing researchers to associate the effect of cognitive tools embedded in an 

interactive learning environment with learning process indicators captured by the logging data. 

The sample size of 42 groups limited our ability to investigate how other factors such as students 

characteristics, behaviors, and task features impacted their learning. Our next research step 

involves the investigation of whether and how particular patterns of log events are associated 

with particular types of student discourse (student learning presented in dialogic forms) and 

behaviors so that we can identify valid and reliable indicators (proxies) of student learning. 

 
Table 1. Mixed effects ANOVA Results on BKT parameter estimates 

BKT parameter estimates Without graph With graph Graph effect 

 Mean SD Mean SD F, p 

(a) P(Li): Probability of having 

knowledge before the level 

.18 .10 .15 .12 F = .99, p = .32 

(b) P(T): Probability of becoming 

knowledgeable within the level 

.56 .18 .52 .18 F = .43, p = .52 

(c) P(G): Probability of guessing 

correctly without knowledge 

.37 .29 .26 .23 F = 6.4, p < .05 

(d) P(S): Probability of making mistakes 

with knowledge 

.41 .20 .31 .16 F = 11.5, p < .01 

Note. All parameters ranged from 0 to 1. 

 

Towards Sketch-based Learning Analytics  

 

James C. Lester, Eric N. Wiebe, & Andrew Smith, North Carolina State University 

 

 Subject/Problem: Diagrams and sketching are fundamental to teaching and learning in 

science education. From primary through post-secondary education, students use drawings and 

graphical representations to make sense of complex systems and as a tool to organize and 

communicate their ideas to others. Studies have shown that learning strategies focusing on 

learner-generated sketches can produce effective learning outcomes, such as improving science 

text comprehension and student engagement (Rich & Blake, 1994), facilitating the writing 
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process (Moore & Caldwell, 1993), and improving the acquisition of content knowledge (Britton 

& Wandersee, 1997). Furthermore, spatial ability (facilitated through drawing) has been 

recognized as a predictor of STEM success even when accounting for mathematical and verbal 

ability (Wai, Lubinski, & Benbow, 2009). 

Unlike the well studied areas of how people learn from writing text, viewing pre-rendered 

graphics, and reading, relatively little is known about how the generation of scientific drawings 

affects learning. Van Meter and Garner (2005) posit that students asked to draw a picture engage 

in three cognitive processes: selecting relevant information, organizing the information to build 

up an internal verbal model, and constructing an internal nonverbal representation to connect 

with the verbal representation. Others suggest that drawing can be a meaningful learning activity 

requiring both essential and generative processing to mentally connect multiple knowledge 

representations (Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010). One of the first 

steps towards developing sketch-based learning analytics is devising methods for automatically 

analyzing students’ drawings. In this presentation we describe our work on automatically 

analyzing student-generated science drawings and discuss the rich potential of sketch-based 

learning analytics. 

Methods: We have been exploring sketch analytics in the context of the LEONARDO 

project (Figure 1), which is designing, developing, and investigating an intelligent virtual science 

notebook for interactive scientific modeling in elementary science education. Students in Grades 

4 and 5 use LEONARDO to create and experiment with interactive models of physical phenomena. 

With a curricular focus on electricity and magnetism, LEONARDO features a pedagogical agent 

that provides explanations and advice as students undertake modeling activities. LEONARDO’s 

curriculum is based on that of the Full Option Science System (FOSS) and is aligned with the 

Next Generation Science Standard goals in elementary school science education. Throughout the 

inquiry process, students using LEONARDO are invited to create symbolic sketches, including 

electrical circuits. Given the challenges of machine analysis of freehand sketching, as well as 

concerns of excessive cognitive demand for elementary students working in such an unstructured 

space, LEONARDO supports icon-based symbolic drawing tasks. In conjunction with LEONARDO, 

we have developed SKETCHMINER, a sketch data mining system that automatically analyzes and 

compares student drawings using topological graphs (Figure 2).  

 

  
 

For the analyses of SKETCHMINER that will be discussed in the presentation, a corpus of 

symbolic drawings was collected from fourth grade students interacting with LEONARDO in 
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North Carolina and California. After data cleaning, drawing activities from 132 students were 

used for the analysis. Student drawings were scored in comparison to normative models 

constructed by the research team. To evaluate SKETCHMINER, we clustered student drawings 

using both an unweighted and a weighted topographical edit distance as the distance metric.  

Results: In order to evaluate the clusters, two independent coders from the project’s 

education team developed a rubric and scored the student responses for circuit drawings 

involving a switch, motor, and battery connected in series. Based on the rubric, the drawings 

were independently classified into 4 clusters by the two coders (κ = .9), creating a gold standard 

clustering to validate our clusters against. SKETCHMINER produced strong alignment with the 

human classifications, with the weighted edit distance producing better results than unweighted 

(Table 2). Cluster-based classification accuracies for the highest performing distance metric are 

shown in Table 3. 

 
Table 2. SKETCHMINER Classification Accuracy 

Distance Metric Accuracy Precision Recall 

Unweighted 0.73 0.56 0.63 

Weighted 0.86 0.74 0.76 

 
Table 3. SKETCHMINER Classification by Class – Weighted Edit Distance 

Class Accuracy Precision Recall 

1 (Blank) 0.89 0.61 1 

2 (No Structure) 0.87 0.66 0.5 

3 (Some Structure) 0.86 0.92 0.6 

4 (Correct) 0.98 1 0.96 

 

Discussion: The results show promise as a means of automatically assessing learner 

drawings and suggest several lines of investigation for sketch-based learning analytics. First, 

while “distance to solution” is a valuable metric, SKETCHMINER’s edit distance could also be 

used to compare errors to each other. Preliminary analysis using this technique has shown 

promise for identifying common error states that could be used in curriculum redesign or to 

generate targeted scaffolding for students. Perhaps the most promising area for analysis is 

investigating the drawing process itself. Topographical representations can be created at any 

point in the drawing process, allowing for analysis of sequences and patterns in student drawing. 

Models learned from corpora of learner drawing processes can be used to create more accurate 

models of learners’ conceptual representations, as well as the basis for providing customized 

scaffolded support scaffolding to a broad range of learner populations. 
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