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Abstract:  We report on the Modeling Across the Curriculum Project (mac.concord.org), a 5-year 
study funded by the IERI program (IERI # 0115699). In this project we are using qualitative 
model-based tools for inquiry in three science domains (Genetics, Gas Laws, & Newtonian 
Mechanics) to promote scientific literacy on a broad scale, namely, content knowledge, process 
skills, and epistemologies of science (Perkins, 1986). The process skills we focus on in this project 
are model-based inquiry skills; epistemological constructs of interest here are students’ 
epistemologies of models as a subset of epistemology of science (Gobert & Discenna, 1997; 
Schwartz & White, 1999). Our technological infrastructure, Pedagogica ™ (Horwitz & Burke, 
2002) logs all students’ interactions with our hypermodels (Horwitz & Christie, 1999). We use 
students’ log files as performance assessments of model-based inquiry on inquiry tasks called “hot 
spots” and track changes in inquiry skills over time both within and across domains.  
 

Project Overview 
 The Modeling Across the Curriculum project is a scalability project for which we have developed a 
technology platform, a reporting system, and curricular materials. There are four levels of research being conducted. 
Level 1 is focused on improving the scaffolding design through individual interviews of students and teachers. Level 
2 is focused on classroom-based studies to evaluate the impact of amount of scaffolding. Level 3 is a longitudinal 
study of our dependent variables (content, inquiry skills, attitudes towards science, and epistemology of models) 
with the same students across 3 years in all three domains in our Partner Schools. Level 4 addresses what supports 
are necessary to scale this to many more schools.  
 
 Our curricular activities present students with content using a progressive model-building approach (White 
& Frederiksen, 1990; Raghavan & Glaser, 1995; Gobert & Clement, 1999) in which simpler models (e.g., static 
representations of structural information) provide conceptual leverage for more complex models (e.g., causal 
models) of scientific phenomena, these, in turn, support model-based reasoning. We support students’ model-based 
reasoning using scaffolds designed by our group (Gobert & Buckley, 2003) and in accordance with model-based 
learning theory (Gobert & Buckley, 2000); in doing so, we also draw on literature on students’ difficulties in 
learning with models (Lowe, 1993).  
 
 The inquiry skills in national standards (NSES, 1996; U.S. Dept of Education, 1993) match pedagogically 
with model-based teaching and learning, the theoretical framework underlying our research, learning activities, and 
assessment (Gobert & Buckley, 2000). The tenets of model-based learning are based on the presupposition that 
understanding requires the construction of mental models, and that all subsequent problem-solving or reasoning are 
done by means of manipulating or ‘running’ these mental models (Johnson-Laird, 1983). Model-based reasoning 
also involves the testing, and subsequent reinforcement, revision, or rejection of mental models (Buckley & Boulter, 
2000). This represents authentic science thinking in that it is analogous to hypothesis development and testing 
among scientists (Clement, 1989). The reasoning processes of hypothesis generation from the model, testing that 
hypothesis, and interpreting the data are among the higher order inquiry skills that are difficult to teach and are the 
type of reasoning needed in inquiry (Raghavan et al, 1995; Penner et al, 1997; White et al, 2002; Gobert, 2000).  
 
Our technology: What’s under the hood? 
Content Engines (BioLogica, Dynamica, Chemica, & Connected Chemistry i)  
 These are implemented in Java, using model, view, controller architecture. They are Event-driven via action 

listeners. Actions may be initiated by user, via UI, or by model, via state change events. 



Script Layer 
 Our authoring environment uses node-and-arc representation of script structure. Nodes contain executable 

code and screen layout specification. Arcs implement flow control and node initialization and cleanup 
functions. State saving is achieved by designating alternative start nodes. 

Pedagogica™ 
 Links scripts to engines at runtime, using Java’s introspection capability. These include generic objects such 

as questions, graphs, etc. They implement logging functions, including encryption and backup of log files. 

CC Portal 
Implements web-based school-topic-teacher-class-student registration process. It parses XML in student log 
files and populates MySQL database. It archives and maintains all data and provides browser-based online 
access to reports for administrators, teachers, and students. 

Data mining tools 
Produce customized reports for researchers. The output is exported to third-party statistics programs. 

Measuring Inquiry in situ 
 Inquiry is critical to science reform efforts as acknowledged by national standards (NSES, 1996; U.S. Dept 
of Education, 1993) but research on inquiry skills has been hampered by the difficulty and complexity of measuring 
inquiry, in particular, separating inquiry from its context. Since inquiry skills are developed in rich scientific 
contexts, their assessment needs to be conducted within the scientific domains and contexts in which they are 
embedded (Mislevy et al., 2002). In the past, two approaches to measuring inquiry have been used: short answer 
tests of specific skills, and hands-on performance assessments. The former can be incorporated into large-scale 
standardized assessments but have been criticized because it is unclear whether decontextualized knowledge of the 
various skills that make up inquiry are sufficient to allow students to undertake inquiry (Pellegrino, 2001). The 
second option, performance assessment, appears to be more authentic because it requires a greater integration of 
specific skills to solve real problems (Ruiz-Primo & Shavelson, 1996) however, these are seldom used in schools, 
due largely to the difficulty of administering reliable assessments and the resulting high cost.  
 

Our project uses a different approach that offers both the validity of performance tests and the simplicity 
demanded by large-scale assessments: that is, computer-based assessments of inquiry that are embedded in 
instructional activities. Using our scripted models which are based on scientific laws, the learner can ask a question 
of such a model, develop a plan of action for using the model to answer the question, run an experiment to test the 
model, collect the data, analyze the data, and communicate findings to other users. The advantages of using such a 
system to conduct empirically rigorous research on learning and assessment of inquiry skills are many, as follows. 
Data collection. Because all activities are on-computer, we can effortlessly and accurately monitor and record every 
student response and action. Control. Because we have a great degree of control over the learning environment, we 
can simplify it to make the content more accessible and the experiments both rigorous and easy to conduct. This can 
save time in development and one can increase the complexity of the science concepts being assessed. 
Reproducibility. All aspects of the assessment can be exactly reproduced—the experiment, the scaffolding, and the 
hints. Furthermore, there are no uncontrolled clues for the learner, such as the tone of a human response or non-
verbal clues. Integration with instruction. The same model and technical environment used for learning activities 
can be used for assessment. The assessment can be part of instruction, so that additional class time is not required. 
Reach. Because only a networked computer is needed, we can conduct this research anywhere and the resulting 
assessment tools can be used in any school, nationwide or worldwide.  

Inquiry Hot Spots 
 As previously stated, our computer models are hypermodels (Horwitz & Christie, 1999) which are scripted 
using Pedagogica ™ (Horwitz & Burke, 2002), a technological infrastructure that logs all students’ interactions with 
our models and responds to learners based on their input. We log all students’ interactions with models and use data 
from inquiry “hot spots”, i.e., tasks that require deep reasoning and contain multiple components of model-based 
inquiry (representation, acquisition, integration, reasoning, and reflection) to characterize students’ inquiry strategies 
on that task. We use students’ log files on multiple inquiry hot spots across three domains to address how students’ 



inquiry skills are developing both within and across domains. One measure of students’ inquiry skills is how 
systematic students are in manipulating models to achieve a goal. Systematicity has been found to be a reliable 
measure of students’ strategic learning and knowledge acquisition strategies (Gobert, 1994; Thorndyke & Stasz, 
1980) and is a good measure with which to compare learners since it bears on their skill at estimating solutions 
(Paige & Simon, 1966). As we proceed with the project we will use students’ data on inquiry hot spots and evaluate 
their relationship to both conceptual learning measurements, i.e., pre-post content tests and to measures of students’ 
epistemologies of models and views of science since students’ epistemologies of models have been found to 
influence science learning (Gobert & Discenna, 1997), thus, it is possible that students’ epistemologies influence the 
manner in which students strategically manipulate models as well. 

BioLogica log file analysis 
 The MAC group has been analyzing students’ log files from a model-based inquiry perspective in all three 
domains.  We present data from BioLogica here; data on students’ inquiry is presented elsewhere for both Dynamica 
(Gobert et al, 2006) and Connected Chemistry (Levy & Wilensky, 2006).  Here we describe students’ performance 
on inquiry hot spots as they progress through BioLogica’s ™12 activities. In the Monohybrid activity students have 
opportunities to demonstrate not only their models of inheritance (i.e., content knowledge), but also their model-
based inquiry skills. For example, we can track how systematic (or not) students are at this task by logging the 
crosses they make, i.e., students who have made the correct cross to answer the question, but do not realize it, or 
whether they make repeated crosses. Monohybrid is the fourth core activity and is intended to help students integrate 
their models of meiosis and fertilization (developed in the first 3 activities) into a model of inheritance. After 
introducing the Pedigree and Punnett square representations as well as the concept of probability, four tasks use a 
progressive modeling approach to foster students’ abilities to use the representations and their models to reason 
about models of inheritance. Both of these are essential model-based inquiry skills. 

 
 The first two tasks in the series guide students’ investigations of the distribution of traits among offspring. 
Tasks 3 and 4 differ in that they provide little scaffolding and ask students to manipulate the model of the dragon 
genome to set up particular situations. In task 3 we ask students if it is possible for a pair of dragons to have only 2-
legged offspring and then challenge them to make it happen. Task 4 asks students to again manipulate the model of 
the dragon genome such that a trait appears to skip a generation. Although the first step in task 4 is procedurally the 
same as task 3, it uses a different model of inheritance (i.e., simple dominance vs. the incomplete-dominance model 
for Legs) so this constitutes transfer.  

 
 We use Task 3 here to describe the type of data collected and how we analyze students’ inquiry skills. 
Students use the Chromosome tool to inspect and alter the genome of the parents. They then cross the parents using 
the Cross tool and observe the 40 offspring randomly generated by the meiosis and fertilization model. We 
determine whether students are successful by checking that the parents have the necessary genotypes to produce 
only 2-legged offspring. Student performance is scored by computer, based on whether they made the correct 
prediction, whether they were successful, how many attempts they made, and whether they repeated any crosses (an 
indication of haphazard (as opposed to systematic) behavior. There are six categories ranging from A (correct on 
first try) to F (failed with only one attempt). In between are categories that distinguish successful and systematic, 
successful but haphazard, and similar categories for unsuccessful students. 
 
 Students’ actions and answers are captured in xml files that are uploaded to our server. The xml log files 
have been validated at each stage of processing and data reduction. First, we created concise chronological reports of 
students’ actions. We then created algorithms that produced summary records consisting of one record per log file. 
We then created and validated algorithms for producing one record per student. It is used in the statistical analyses 
that follow. For Task 3, the statistical records include fields that identify school, class, teacher, and student ID 
numbers, cumulative time spent on Task 3, students’ final selections for the prediction and whether correct, whether 
they were successful, number of attempts, and the Task 3 category (A-F) described above. Similar data extractions 
were performed for the other three tasks, based on the affordances of the data collected. 
 

Overall Performance on Tasks 
 Table 1 includes summary statistics across the four tasks. As the tasks became more difficult, students 
spent longer on the tasks. As expected, fewer students succeed at Task 4 than Task 3. 
    



Table 1. Summary statistics for cross task comparison 
 

 Task 

 
Average 
time on 
task 
(minutes) 

 
N 
students 
who did 
task 

correct 
prediction 
(%students) 

Punnett 
square on 
first try 
(%students) 

Punnett 
square select
(%students) 

Punnett 
square 
predict 
(%students) 

task success 
(%students) 

task success 
on first try 
(%students) 

1 1.6 639 76%      
2 2.7 647 45% 72% 68% 72%   
3 4.0 581 59%    90% 40% 
4 5.8 528      49% 20% 
 
 
 In Task 3 we asked students if a pair of dragons could have only 2-legged offspring and then challenged 
them to make it happen. Looking at the data more closely, 59% of the students predicted that it could be done. 90% 
of the students were able to accomplish the task, with 40% able to do so on the first attempt. 5% of the students who 
predicted it could be done did not succeed in doing so. 

Correlation of monohybrid performance with post test scores and gain 
 In order to identify tasks that best predict learning gains, we ran a series of analyses using a dataset of 649 
students in ten member schools. Member schools were selected to obtain a demographically and geographically 
diverse population of students. The majority of the students (54.2%) were enrolled in ‘regular’ classes. The 
correlations listed below are significant at p<.001, 1-tailed. 

• All four tasks are correlated. (R Squareds ranging from .493 to .845) 
• Pre and post test scores are significantly and strongly correlated. (R Squared = .572,) 
• Monohybrid subscores pre and post are significantly and strongly correlated. (R Squared = .535) 

Total Gains are negatively correlated with Pre test scores. (R Squared = -.326) 
Monohybrid Gains are negatively correlated with Mono Post test subscore. (R Squared = -.465,). We 
interpret the negative correlations as indicative of a ceiling effect. 

• Performance on all 4 tasks correlates with pre and post test scores and gains, both overall and for 
monohybrid items, with the exception of Tasks 1 and 4 which are not significantly correlated with 
Monohybrid Gain. (R Squareds ranging from .075 to .450) 

 
 We then ran a series of regressions to determine how well performance on the Monohybrid tasks predicts 
outcomes and gains when pre test scores are used as a covariate. Mono Post and Mono Gain refer to those items on 
the post test specifically targeting monohybrid concepts. Table 2 summarizes the results. In each case, t-statistics of 
the regression coefficients for covariate (pretest) and independent variables (tasks) reveal that only the pretest and 
Task 3 are significant predictors of outcomes (1-tailed significance <.05). 
 

Table 2. Summary of Adjusted R Squares for outcome variables 
 

 Post test Total gain Mono Post Mono Gain 
Pre test .325 .137 .281 .239 
Plus Tasks 1-4 .399 .231 .346 .300 
Change due to Tasks 1-4 .072 .094 .065 .061 

 
 It is interesting that the tasks make a greater contribution to the variance of post test scores and total gain 
than to the monohybrid post test score and gain. This suggests that students’ performance on these tasks; Task 3 in 
particular, may be indicative of knowledge and skill components beyond those measured by the monohybrid items 
of the pre and post tests. We might infer that students who can reason from effect to cause, as required by Task 3, 
are better able to reason through the questions posed on the test.  
 



 We then examined the systematicity of these students’ performance on Task 3. We eliminated A 
(successful on first try) and F (unsuccessful, only one try) categories since both involve just one trial. We compared 
the post test performance (See Table 3.) of the four remaining groups (n=192) with an ANCOVA using the pre-test 
as covariate. The ANCOVA indicates that the Pre-test covariate is significant, as is the four-category predictor 
variable (CS, CH, IS, IH) (F=7.383, p < .001). Together, the covariate and this variable account for 28.3% of the 
variance in the Post-test scores. Multiple comparisons using Tukey HSD shows that there are significant differences 
between the “CS” and “CH” groups as well as the “CS” and “IH” groups. The “CS” group has significantly higher 
post-test scores (co-varying on pre-test) than did either of the two other groups. The mean difference is significant at 
the .05 level.  
 
Table 3. Post test mean scores (out of 33)  
 

T3CATSYS4NUM Mean Std. Error 95% Confidence Interval 
      Lower Bound Upper Bound 
correct systematic (CS) 23.117 .643 21.847 24.388 
correct haphazard (CH) 20.426 .788 18.870 21.981 
incorrect systematic (IS) 15.306 3.146 9.093 21.518 
incorrect haphazard (IH) 17.946 1.362 15.258 20.635 

 
 When we group and compare the systematic and haphazard students regardless of their success on Task 3, 
an ANCOVA indicates that the Pre-test covariate is significant, as is the two-category predictor variable (S, H) 
(F=12.578, p < .001). Together, the covariate and this variable account for 25.2% of the variance in the Post-test 
scores. The post test means of systematic and haphazard students are shown in Table 4. 
 
Table 4. Post test mean scores of systematic and haphazard students. 
 

T3CATSYS2NUM Mean Std. Error 95% Confidence Interval 
      Lower Bound Upper Bound 
Haphazard 19.980 .740 18.518 21.442 
Systematic 22.868 .651 21.582 24.154 

 
 We have shown that students’ performances on Task 3 are a predictor of their later performances on the 
post test. It is not surprising that students who are successful on Task 3 and students who are systematic are also 
more likely to do well on the post test. We have also demonstrated our ability to analyze student behavior during 
inquiry in BioLogica™, which we will extend to other hotspots.  

Discussion & Conclusions 
In the MAC project activities are scaffolded to support progressive model-building and the development of 

modeling skills.  It is our belief that scaffolding the development of inquiry skills is important because these skills 
can be then bootstrapped to better learn and more deeply understand science content.  Our technology which logs all 
students’ manipulations provides an authentic, time-efficient means of measuring inquiry during instruction, which 
represents progress in measuring inquiry skills.  We are measuring inquiry in three domains, and thus are also able 
to address how modeling skills develop both within and across domains (Buckley & Gobert,  2006).  Here, we 
provide a rich example of model-based inquiry from BioLogica and demonstrate its relationship to content learning. 
 

This approach can inform instruction since our technology can identify students who are at risk, i.e., those 
who are failing to developing inquiry skills. Furthermore, since we are obtaining data from many students and from 
many diverse schools (we are currently running in 350+ schools in 20 countries and 41 states), we will develop a 
clear sense of when teachers should intervene. This is one of the goals of a proposed project (Horwitz, Gobert, & 
Koedinger, 2005). Logging students’ inquiry skills is important to research on human cognition since it permits an 
excellent window into complex inquiry processes and how they develop. Lastly, we hope that our work can inform 
technology design, pedagogy, standards, and policy on technology-based inquiry learning.    



Endnotes 
(1) Levels of partnership determines the degree of support which schools obtain from us. 
(2) Connected Chemistry was developed by Uri Wilensky, who is also a Co-PI on this project, & Sharona Levy as 

part of a sub-contract to Northwestern University.) 
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